CABLE LAYING IN THE WADDENZEE

CEDA – BREDA 22 November 2005

TWO ALTERNATIVES FOR CABLE BURIAL

 BURIAL BELOW LOWEST EXPECTED SEABED PROFILE DURING SYSTEM'S LIFETIME

LESS BURIAL AND ACCEPTING THAT LATER RETRENCHING MAY BE NEEDED

RESULTS OF A STATISTICAL ASSESSEMENT OF THE SEABED MORPHOLOGY

KP1	Depth 1995/96	(1) Average depth	(1) Standard Deviation	Max. depth 1/100 years (m to NAP)	Max. depth below 95/96 1/100 years	Min max depth, survey 1996(*)/97	Min max. depth (2), survey 1999
9 - 10	11.4	14.0	1.0	16	5	12 - 13	
10-11	13.4	13.6	1.0	16	3	12.5 - 13.5	
11-12	13.5	14.0	1.1	17	3	10.5 - 12.5	
12-13	11.6	14.0	1.3	17	5	9.5 - 10.5	9 - 10.5
13-14	10.2	14.0	1.5	18	888 8 8 8	10 - 12	10 - 12
14-15	11.2	14.0	1.6	18	×7.2	11 - 12	11 - 12
15-16	11.5	13.9	1.7	18	6	11 - 12	11 - 11.5
16-17	12.2	14.7	1.8	19	$\mathbf{Z}_{\mathrm{const}}$	12 - 13.5	10.5 - 11.5
17 - 18	14.4	15.8	1.9	20	6	13.5 - 15	11.5 - 12.5
18 - 19	15.8	15.2	2.4	21	. 533	13 - 14.5	9.5 - 11.5
19-20	13.7	13.4	4.6	24	10	6 - 13	4 - 10
20-21	8.2	10.1	4.9	22	14	4 - 8	5-9
21 - 22	6.8	8.0	3.2	15	3 8 2	7 - 8	8.5 - 10.5
22 - 23	8.3	7.9	2.4	13	5	assum. 7 - 8	9-11
23 - 24	9.0	8.7	2.0	13	4	assum. 7 - 8	7.5 - 9
24 - 25	11.2	9.6	1.8	14	3	8 - 10	7.11
25 - 26	9.5	10.8	1.5	14	5	7.5 - 10	
26 - 27	9.1	10.6	1.3	14	5	7.5 - 10	
27 - 28	10.0	10.7	1.2	13	3	10 - 11	

(1) The values in the columns for "Average depth" and "Standard deviation" have been prepared on the basis of depth measurements up to 1995/1996.

(2) The depth measurements in 1999 were made by use of a single beam echo sounder without any heave, pitch or roll correction. The sea was very calm during this survey, and the measurements are not much influenced by vessel movements

AUTHORITY RESTRICTIONS

 KP 0 (Eemshaven) to KP 24 : Construction <u>only</u> allowed between 1 April and 1 June

KP 24 to KP 40 : Construction <u>not</u> allowed between 15 March and 15 April

CONCLUSIONS OF SEABED MORPHOLOGICAL STUDY by ACRB (Romke Bijker)

 Using a Normal Distribution and statistical no risk of retrenching would need excessive burial

Accepting a low risk of retrenching would reduce burial depths to 3m to 5m

6°40'E

Vervolg zie Krt 1812.4

45'

50'

Vervolg zie Krt 1812.4

OPTIONS FOR BURIAL OF THE CABLE

- Combination of dredging and post-trenching
 - 1. Areas with 5m burial: 2m dredging + 3m posttrenching
 - 2. Areas with 4m burial: 1m dredging + 3m posttrenching
 - 3. Areas with 3m burial: no dredging + 3m post trenching
 - Post-trenching to a depth of 3, 4 and 5m

Final Decision

 BASE CASE: Combination of Dredging and 3m deep Post-Trenching

 ALTERNATIVE, proposed by JV: Post-Trenching only

COMPANY REQUESTED THAT FEASIBILITY OF 5m DEEP POST-TRENCHING SHOULD BE PROVEN

5m deep

Post-Trenching Jet Sled

The HVDC 450kV bi-pole NorNed Kabel (Transport Capacity 700 MW)

Width: 217mm; Height: 136mm; Weight in air: 90 kg/m

UPDATED MORPHOLOGY ASSESSEMENT WITH MOST RECENT RIJKSWATERSTAAT INFORMATION by ACRB (Romke Bijker)

- Tendency of sedimentation in eastern direction clearly demonstrated
- Bijker concluded that in the actual situation the risk of re-trenching was not higher with 3m deep post-trenching than previously assumed for 5m deep post-trenching
- A few weeks ago we were informed that Authorities accept 3m burial

6°40'E

50'

MORPHOLOGY / SEABED MOBILITY

Difference plot between 1995 and 2001 seabed: Red: sedimentation (shallower) Blue: erosion (deepening)

2005 SURVEY RESULTS

Location	Water Depths in m below MSL				
	Route Update Report 1999	OSAE Survey 2005			
KP 15	11	7.5			
KP 15.5	11	8			
KP 16	11.8	8			
KP 16.5	12.3	8.5			
KP 17	13.5	8.5			
KP 17.5	14.5	8.5			
KP 18	14.6	7.5			
KP 18.5	14.1	6.5			
KP 19	13	4			
KP 19	13	4			
KP 19.5	10	4			
KP 20	6	6			
KP 20.3	4	8			
KP 20.5	6	8			
KP 21	8	9			

теппет 🗲

CONSEQUENCES OF SURVEY 2005

- Local dredging required for access of Cable Lay Vessel
- Several areas where the cable has to be laid with floaters and pushed laterally to its final position before lowering to the seabed

LANDFALL EEMSHAVEN

MAIN FEATURES FOR WADDENZEE INSTALLATION ENGINEERING OF NORNED HVDC KABEL

- Engineer the installation by Floating Cable Installation
- Determine dredging required for Cable Lay Vessel Navigation
- Do Pre-Lay Survey short before cable installation to update seabed levels just before installation
 Engineer the Eemshaven Landfall

