Case Study Beneficial Use of Dredged Sediments

Project	Cement-Lock Thermo-Chemical Contaminated
	Sediment Processing
Classification	R1A_2018_US
Major Function	Raw Material
Other functions	Remediation, Reclamation
Location	Bayonne, New Jersey USA
Volume	500 m³ demonstrated in 7600 m³/year demonstration rotary kiln
Technique	Thermo-chemical high temperature treatment followed by
	immobilization to produce a construction grade cement
Contaminants	Dioxins/Furans, PAHs, Heavy metals, Pesticides
Granulometry	Silty/clayey
Scale	Full scale demonstration
Client	US Environmental Protection Agency Region 2 (USEPA), and New
	Jersey Department of Transportation (NJDOT)
Executor	Contractor: US Department of Energy Brookhaven National
	Laboratory (BNL), 2018 - AMEC-Foster Wheeler (Wood); Research
	Institute: Gas Technology Institute (GTI) & Gas Research Institute
	(GRI) / Des Plaines, Illinois USA
Research program	USEPA Region 2 / NJDOT - New York/New Jersey Harbor Sediment
	Decontamination Program
Contact	Al Hendricks, Volcano Partners, LLC, al.hendricks@cement-
	<pre>lock.com, https://www.cement-lock.com/</pre>
Year start-end	2005 - 2018

Description of the project

Cement-Lock© (engineered process) is a patented, thermo-chemical manufacturing technology that uses contaminated sediments as a feedstock to produce a remediated pozzolanic glass-like material with marketable value called Ecomelt©. Ecomelt© is a beneficial use product that may be used as a 40% replacement for Portland cement in the production of concrete, at a lower cost than Portland cement alone. A 7600 m³/year demonstration plant was constructed and demonstration tests were conducted in 2005 through 2007 and successfully created Ecomelt© from sediment from the Lower Passaic River, New Jersey Superfund site (Figure 1).

The technology consists of feeding a mixture of dewatered contaminated sediment and modifiers (calcium, aluminum and silica to control the texture and properties of the Ecomelt©) to a natural gas fired rotary kiln melter that operates at temperatures between 1315° to 1426° C. During processing, the sediment-modifier mixture is thermo-chemically transformed to a homogeneous, lava-like melt that encapsulates inorganic contaminants (heavy metals) (Figure 2).

Organic contaminants are disassociated and destroyed at these elevated temperatures. Inorganic contaminants present in the sediment are immobilized or "locked" within the pozzolanic glassy product matrix. Organic contaminants in the feedstock are destroyed by the high temperature, to Destruction Removal Efficiencies' of 99.9999+% for compounds such as polychlorinated biphenyls (PCBs), Dioxin/Furans, and pesticides/herbicides. Mercury, lead and other volatilized metals are captured in the air pollution control system. Remaining metals are contained and immobilized in the Ecomelt© which is the primary beneficial use - glassy, pozzolanic material product, which when dried and finely ground (Figure 3), can be used as a partial 30-40% replacement for Portland cement in the production of concrete (Figure 4).

Graphical information

Figure 1: Cement-Lock Demonstration Rotary Kiln

Figure 2: Ecomelt©

Figure 3: Pulverized Ecomelt©

Figure 4: Poured concrete sidewalk

References/web links

- 1. https://semspub.epa.gov/work/02/213389.pdf
- 2. http://www.nj.gov/dep/passaicdocs/docs/NJDOTSupportingCosts/DECON-CEMLOCK-ENDESCO-FINALREPORT-PILOT-PHI.pdf
- 3. https://www.slideshare.net/EricAStern1/cement-lock-battelle-poster-final-stern-43668563
- 4. http://sednet.org/download/2%20Eric%20Stern.pdf
- https://www.researchgate.net/publication/281350583 Thermal Treatment for Reclamatio n and Beneficial Use of Contaminated Sediments (Presented at the 33rd International Conference on Thermal Treatment Technologies & Hazardous Waste Combustors, At Baltimore, Maryland USA, 2014)